Mechanism of spontaneous intracellular calcium fluctuations in single GH4C1 rat pituitary cells.
نویسندگان
چکیده
Individual unstimulated GH4C1 cells exhibited spontaneous dynamic fluctuations in cytosolic free Ca2+ concentration ([Ca2+]i). Either chelation of extracellular Ca2+ with EGTA or treatment with nifedipine inhibited spontaneous [Ca2+]i fluctuations, indicating that the [Ca2+]i profile was dependent on the entry of extracellular Ca2+ via voltage-operated Ca2+ channels (VOCC). Spontaneous [Ca2+]i fluctuations did not resume immediately after exposure of EGTA-pretreated cells to extracellular Ca2+, supporting the hypothesis that the complex [Ca2+]i profiles observed in unstimulated cells required filling of an intracellular Ca2+ pool. BAY K 8644 elicited large rapid oscillations in [Ca2+]i. After chelation of extracellular Ca2+, however, re-addition of Ca2+ plus BAY K 8644 did not result in [Ca2+]i oscillations. The intracellular Ca2+ pool necessary for BAY K-induced oscillations was not the same Ins(1,4,5)P3-sensitive pool stimulated by thyrotropin-releasing hormone (TRH), because the TRH-stimulated Ins(1,4,5)P3-induced [Ca2+]i spike and the BAY K 8644-induced oscillations were differentially sensitive to chelation of extracellular Ca2+ and thapsigargin. Caffeine caused an increase in [Ca2+]i fluctuations in quiescent cells, supporting a role for Ca(2+)-induced Ca2+ release (CICR) in the generation of spontaneous [Ca2+]i fluctuations. In conclusion, the complex spontaneous changes in [Ca2+]i observed in single GH4C1 cells depend on both the influx of extracellular Ca2+ through VOCC and the action of an intracellular Ca2+ pool that increases [Ca2+]i through a CICR-like mechanism.
منابع مشابه
Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida.
Pfiesteria piscicida Steidinger & Burkholder is a toxic dinoflagellate that leads to fish and human toxicity. It produces a bioactive substance that leads to cytotoxicity of GH4C1 rat pituitary cells. Extracellular adenosine 5'-triphosphate (ATP) acting on P2X7 purinergic receptors induces the formation of a nonselective cation channel, causing elevation of the cytosolic free calcium followed b...
متن کاملIonomycin inhibits thyrotropin-releasing hormone-induced translocation of protein kinase C in GH4C1 pituitary cells.
Thyrotropin-releasing hormone (TRH) induces rapid and transient conversion of protein kinase C (Ca2+/phospholipid-dependent enzyme) from a soluble to a particulate-bound form in GH4C1 rat pituitary cells. Ionomycin (200 nM), a calcium ionophore, had no effect by itself on the subcellular distribution of protein kinase C. However, pretreatment of the cells with 200 nM ionomycin inhibited by grea...
متن کاملChemokine stromal cell-derived factor 1alpha induces proliferation and growth hormone release in GH4C1 rat pituitary adenoma cell line through multiple intracellular signals.
We used GH4C1 cells as a model to study the effects of the chemokine stromal cell-derived factor 1 (SDF1) in pituitary functions. In these cells, SDF1alpha induced proliferation and growth hormone secretion, suggesting a possible regulatory role for this chemokine at pituitary level. We evaluated the intracellular signaling involved in these effects: SDF1alpha increased cytosolic [Ca(2+)] and a...
متن کاملSubsecond and second changes in inositol polyphosphates in GH4C1 cells induced by thyrotropin-releasing hormone.
It has been demonstrated previously that thyrotropin-releasing hormone (TRH) induces changes in inositol polyphosphates in the GH3 and GH4C1 strains of rat pituitary cells within 2.5-5.0 s. TRH also causes a rapid rise in cytosolic free calcium concentration ([Ca2+]i) in these cells which is due largely to redistribution of cellular calcium stores. Therefore, it has been concluded that TRH acts...
متن کاملCeramide 1-phosphate enhances calcium entry through voltage-operated calcium channels by a protein kinase C-dependent mechanism in GH4C1 rat pituitary cells.
Sphingomyelin derivatives modulate a multitude of cellular processes, including the regulation of [Ca2+]i (the intracellular free calcium concentration). Previous studies have shown that these metabolites often inhibit calcium entry through VOCCs (voltage-operated calcium channels). In the present study, we show that, in pituitary GH4C1 cells, C1P (C2-ceramide 1-phosphate) enhances calcium entr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 292 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1993